Advertisements
Advertisements
प्रश्न
Given A = `[(4, 1),(2,3)]` and B = `[(1, 0),(-2, 1)]`, find A – B
उत्तर
A – B = `[(4, 1),(2, 3)] - [(1, 0),(-2, 1)]`
= `[(3, 1),(4, 2)]`
APPEARS IN
संबंधित प्रश्न
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
X + B = C – A
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M
Evaluate if possible `[(6, 4),(3, -1)][(-1, 3)]`
If A = `[(1, 4), (1, -3)]` and B = `[(1, 2),(-1, -1)]`, find:
- (A + B)2
- A2 + B2
- Is (A + B)2 = A2 + B2 ?
If `A = [(1, 4),(1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `A^2 + B^2`
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1), (1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal CA + B
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
Evaluate the following:
`|(3 , 2)| |(-1) , (3)|`
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.