Advertisements
Advertisements
प्रश्न
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
उत्तर
A = `[(-3, 6),(0, -9)]`
At = `[(-3, 0),(6, -9)]`
2At – 3A = `2[(-3, 0),(6, -9)] - 3[(-3, 6),(0, -9)]`
= `[(-6, 0),(12, -18)] - [(-9, 18),(0, -27)]`
= `[(-6 - (-9), 0 - 18),(12 - 0, -18 - (-27))]`
= `[(-6 + 9, -18),(12, -18 + 27)]`
= `[(3, -18),(12, 9)]`
APPEARS IN
संबंधित प्रश्न
Find x, y if `[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Evaluate:
`2[(-1, 0),(2, -3)] + [(3, 3),(5, 0)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `A^t - 1/3 A`
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1), (1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal CA + B
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ∈ Z` (integer)
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
Given that M = `[(2, 0),(1, 2)]` and N = `[(2, 0),(-1,2)]`, find M + 2N
If A = `[(0, -1),(1, 2)]` and B = `[(1, 2),(-1, 1)]` Find the matrix X if : X – 3B = 2A
The additive inverse of matrix A + B, where A = `[(4, 2),(7, -2)]` and B = `[(-2, 1),(3, -4)]` is ______.