Advertisements
Advertisements
Question
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
Solution
A = `[(-3, 6),(0, -9)]`
At = `[(-3, 0),(6, -9)]`
2At – 3A = `2[(-3, 0),(6, -9)] - 3[(-3, 6),(0, -9)]`
= `[(-6, 0),(12, -18)] - [(-9, 18),(0, -27)]`
= `[(-6 - (-9), 0 - 18),(12 - 0, -18 - (-27))]`
= `[(-6 + 9, -18),(12, -18 + 27)]`
= `[(3, -18),(12, 9)]`
APPEARS IN
RELATED QUESTIONS
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
X + B = C – A
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
A – X = B + C
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `A^t - 1/3 A`
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
If P = `|(14 , 17),(13,1)|` and Q = `|(2 , 1),(3 , -3)|` , find matrix M such that P - M = 3Q
If X = `|(1 , -2),(1 , 3)|` , Y = `|(-3 , 0),(4 , 1)|` and Z = `|(5 , -1),(3 , 2)|` , prove that X (Y + Z) = XY + XZ
If A = `[(0, -1),(1, 2)]` and B = `[(1, 2),(-1, 1)]` Find the matrix X if : 3A + X = B
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`