Advertisements
Advertisements
Question
If X = `|(1 , -2),(1 , 3)|` , Y = `|(-3 , 0),(4 , 1)|` and Z = `|(5 , -1),(3 , 2)|` , prove that X (Y + Z) = XY + XZ
Solution
X = `|(1 , -2),(1 , 3)|_(2 xx 2)` Y = `|(-3 , 0),(4 , 1)|_(2 xx 2)` Z = `|(5 , -1),(3 , 2)|_(2 xx 2)`
(Y + Z) = `|(-3 , 0),(4 , 1)| + |(5 , -1),(3 , 2)| = |(2 , -1),(7 , 3)|_(2 xx 2)`
X (Y + Z) = `|(1 , -2),(1 , 3)| |(2 , -1),(7 , 3)|`
`= |(2 - 14 , -1-6),(2 + 21 , -1+9)|`
X (Y + Z) = `|(-12 , -7),(23 , 8)|_(2 xx 2)` ........(1)
XY = `|(1 , -2),(1 , 3)| |(-3 , 0),(4 , 1)|`
=`|(-3-8 , 0-2),(-3+12 , 0 + 3)|`
`= |(-11 , -2),(9 , 3)|_(2 xx 2)`
XZ = `|(1 , -2),(1 , 3)| |(5 , -1),(3 , 2)|`
`= |(5 - 6 , -1-4 ),(5 + 9 , -1 + 6)|`
`= |(-1 , -5),(14 , 5)|_(2 xx 2)`
XY + XZ = `|(-11 , -2),(9 , 3)| + |(-1 , -5),(14 , 5)| = |(-12 , -7),(23 , 8)|_(2 xx 2)` ......(2)
from (1) and (2) X(Y + Z) = XY + YZ
APPEARS IN
RELATED QUESTIONS
Evaluate `2[(-1, 0),(2, -3)] + [(3,3),(5,0)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2A + 3At
Given `A = [(4, 1),(2, 3)]` and `B = [(1,0),(-2, 1)]` find `A^2 - AB + 2B`
If A = `[(1, 4),(2, 1)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, simplify : A2 + BC.
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
If A = `[(2, x),(0, 1)]` and B = `[(4, 36),(0, 1)]`; find the value of x, given that A2 = B.
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ∈ Z` (integer)
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find A + 2C – B
If A = `[(1, 4),(2, 3)]` and B = `[(1, 2),(3, 1)]` Compute 3A + 4B
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is ______.