Advertisements
Advertisements
Question
If A = `[(2, x),(0, 1)]` and B = `[(4, 36),(0, 1)]`; find the value of x, given that A2 = B.
Solution
A2 = `[(2, x),(0, 1)][(2,x),(0, 1)]`
= `[(2 xx 2 + x xx 0, 2 xx x + x xx 1),(0 xx 2 + 1 xx 0, 0 xx x + 1 xx 1)]`
= `[(4 + 0, 2x + x),(0 + 0, 0 + 1)]`
= `[(4, 3x),(0, 1)]`
Given A2 = B
`[(4, 3x),(0, 1)] = [(4, 36),(0, 1)]`
Comparing the two matrices, we get
3x = 36
`=>` x = `36/3` = 12
APPEARS IN
RELATED QUESTIONS
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Evaluate if possible `[(6, 4),(3, -1)][(-1),(3)]`
If A = `[(0, 2),(5, -2)]`, B =` [(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AI
Given `A = [(4, 1),(2, 3)]` and `B = [(1,0),(-2, 1)]` find `A^2 - AB + 2B`
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1),(1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal A + CB
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find the matrix 2A + B
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(z, 0),(10, 5)]` Find the values of x and y
Determine the matrices A and B when A + 2B = `[(1, 2),(6, -3)] and 2"A" - "B" = [(2, -1),(2, -1)]`
If A = `[(3, -5),(-4, 2)]` find A2 – 5A – 14I
Where I is unit matrix of order 2 x 2