Advertisements
Advertisements
Question
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Solution
`2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`
`[(6, 2x),(0, 2)] + [(3, 9),(3y, 6)] = [(z, -7),(15, 8)]`
`[(9, 2x + 9),(3y, 8)] = [(z, -7),(15, 8)]`
Comparing the corresponding elements, we get,
2x + 9 = –7 `=>` 2x = –16 `=>` x = –8
3y = 15 `=>` y = 5
z = 9
APPEARS IN
RELATED QUESTIONS
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A + X = B
Evaluate `2[(-1, 0),(2, -3)] + [(3,3),(5,0)]`
Evaluate if possible `[(3, 2)][(2),(0)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find IB
Given `A = [(4, 1),(2, 3)]` and `B = [(1,0),(-2, 1)]` find `A^2 - AB + 2B`
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
If X = `|(1 , -2),(1 , 3)|` , Y = `|(-3 , 0),(4 , 1)|` and Z = `|(5 , -1),(3 , 2)|` , prove that X (Y + Z) = XY + XZ
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M.
If A = `[(-3, -7),(0, -8)]` and A – B = `[(6, 4),(-3, 0)]`, then matrix B is ______.