Advertisements
Advertisements
Question
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
Solution
Here
X2 = X·X
= `[(4 , 1),(-1 , 2)]·[(4 , 1),(-1 , 2)]`
= `[(16 -1, 4 + 2),(-4 -2, -1 + 4)] = [(15 , 6),(-6 , 3)]`
L.H.S. = 6X - X2
= `6[(4 , 1),(-1 , 2)] - [(15 , 6),(-6 , 3)]`
= `[(24 , 6),(-6 , 12)] - [(15 , 6),(-6 , 3)]`
= `[(24 - 15, 6 - 6),(-6 + 6 , 12 - 3)]`
= `[(9 , 0),(0 ,9)]`
= `9[(1 , 0),(0 , 1)]`
= 9I = R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
Evaluate if possible `[(6, 4),(3, -1)][(-1),(3)]`
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
If A = `[(1, 4),(2, 3)]` and B = `[(1, 2),(3, 1)]` Compute 3A + 4B
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(z, 0),(10, 5)]` Find the values of x and y