Advertisements
Advertisements
प्रश्न
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
उत्तर
Here
X2 = X·X
= `[(4 , 1),(-1 , 2)]·[(4 , 1),(-1 , 2)]`
= `[(16 -1, 4 + 2),(-4 -2, -1 + 4)] = [(15 , 6),(-6 , 3)]`
L.H.S. = 6X - X2
= `6[(4 , 1),(-1 , 2)] - [(15 , 6),(-6 , 3)]`
= `[(24 , 6),(-6 , 12)] - [(15 , 6),(-6 , 3)]`
= `[(24 - 15, 6 - 6),(-6 + 6 , 12 - 3)]`
= `[(9 , 0),(0 ,9)]`
= `9[(1 , 0),(0 , 1)]`
= 9I = R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
Evaluate if possible `[(3, 2)][(2),(0)]`
Given `A = [(4, 1),(2, 3)]` and `B = [(1,0),(-2, 1)]` find `A^2 - AB + 2B`
If A = `[(1, 4),(2, 1)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, simplify : A2 + BC.
Find x and y, if `[(3x, 8)][(1, 4),(3, 7)] - 3[(2, -7)] = 5[(3, 2y)]`
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ∈ Z` (integer)
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find the matrix 2A + B
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`, the values of x, y and z are ______.