Advertisements
Advertisements
प्रश्न
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ∈ Z` (integer)
उत्तर
From the question, We have
x2 + y2 = 25 and 2x2 + y2 = −2
x, y ∈ W (integers)
−2x2 + y2 = −2 ⇒ y2 = 2x2 − 2
x2 + y2 = 25
⇒ x2 + 2x2 − 2 = 25
⇒ 3x2 = 27
⇒ x2 = 9
⇒ x = ±3
y2 = 2x2 − 2
y2 = 2 × 32 − 2 = 16
y2 = ±4
APPEARS IN
संबंधित प्रश्न
Evaluate `2[(-1, 0),(2, -3)] + [(3,3),(5,0)]`
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find 2A – 3B + C
If `[(4, -2),(4, 0)] + 3A = [(-2, -2),(1, -3)]`; find A.
Evaluate if possible `[(6, 4),(3, -1)][(-1, 3)]`
If `A = [(1, 4),(1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `A^2 + B^2`
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find A + 2C – B
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B