Advertisements
Advertisements
प्रश्न
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
उत्तर
`[(-2, 0),(3, 1)][(-1), (2x)] + 3[(-2),(1)] = 2[(y),(3)]`
`=> [(-2 xx -1 + 0 xx 2x),(3x - 1 + 1 xx 2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(2),(-3 + 2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(2 - 6),(-3 + 2x + 3)] = [(2y),(6)]`
`=> [(-4),(2x)] = [(2y),(6)]`
`=>` 2y = –4 and 2x = 6
y = –2 and x = 3
Thus, the values of x and y are 3, –2.
संबंधित प्रश्न
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
X + B = C – A
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
If A = `[(0, 2),(5, -2)]`, B =` [(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AI
If `A = [(1, 4),(1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `A^2 + B^2`
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1), (1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal CA + B
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
If `4[(5, x)] - 5[(y, -2)] = [(10, 22)]`, the values of x and y are ______.
If A = `[(-3, -7),(0, -8)]` and A – B = `[(6, 4),(-3, 0)]`, then matrix B is ______.