Advertisements
Advertisements
प्रश्न
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
उत्तर
`[(-2, 0),(3, 1)][(-1), (2x)] + 3[(-2),(1)] = 2[(y),(3)]`
`=> [(-2 xx -1 + 0 xx 2x),(3x - 1 + 1 xx 2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(2),(-3 + 2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(2 - 6),(-3 + 2x + 3)] = [(2y),(6)]`
`=> [(-4),(2x)] = [(2y),(6)]`
`=>` 2y = –4 and 2x = 6
y = –2 and x = 3
Thus, the values of x and y are 3, –2.
संबंधित प्रश्न
Let `A = [(2,1),(0,-2)], B = [(4,1),(-3,-2)] and C = [(-3,2),(-1,4)]`. Find `A^2 + AC - 5B`
Evaluate:
`6[(3),(-2)] -2[(-8),(1)]`
Find x and y if `3[(4, x)] + 2[(y, -3)] = [(10, 0)]`
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `A^t - 1/3 A`
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find A + 2C – B
If A = `|(15,7),(13,8)|` and B = `|(16,12),(27,11)|`, find matrix X such that 2A - X = B.
If A = `[(1, 4),(2, 3)]` and B = `[(1, 2),(3, 1)]` Compute 3A + 4B
Determine the matrices A and B when A + 2B = `[(1, 2),(6, -3)] and 2"A" - "B" = [(2, -1),(2, -1)]`
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is ______.