Advertisements
Advertisements
प्रश्न
Determine the matrices A and B when A + 2B = `[(1, 2),(6, -3)] and 2"A" - "B" = [(2, -1),(2, -1)]`
उत्तर
A + 2B = `[(1, 2),(6, -3)]` ......(i)
2A – B = `[(2, -1),(2, -1)]` ......(ii)
Multiplying (i) by 1 and (ii) by 2
A + 2B = `[(1, 2),(6, -3)]`
4A – 2B = `2[(2, -1),(2, -1)] = [(4, -2),(4, -2)]`
Adding, we get
5A = `[(1, 2),(6, -3)] + [(4, -2),(4, -2)] = [(5, 0),(10, -5)]`
A = `(1)/(5)[(5, 0),(10, 5)] = [(1, 0),(2, -1)]`
From (i) A + 2B = `[(1, 2),(6, -3)]`
= `[(1, 0),(2, -1)] + 2"B" = [(1, 2),(6, -3)]`
2B = `[(1, 2),(6, -3)] - [(1, 0),(2, -1)] = [(0, 2),(4, -2)]`
∴ B = `(1)/(2)[(0, 2),(4, -2)] = [(0, 1),(2, -1)]`
Hence A = `[(1, 0),(2, -1)]and "B" = [(0, 1),(2, -1)]`.
APPEARS IN
संबंधित प्रश्न
Write the additive inverse of matrices A, B and C:
Where `A = [(6, -5)]; B = [(-2, 0),(4, -1)]` and `C = [(-7), (4)]`.
Given `A = [(-1, 0),(2,-4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A – X = B
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AB
If A = `[(1, 4), (1, -3)]` and B = `[(1, 2),(-1, -1)]`, find:
- (A + B)2
- A2 + B2
- Is (A + B)2 = A2 + B2 ?
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ∈ Z` (integer)
If X = `|(1 , -2),(1 , 3)|` , Y = `|(-3 , 0),(4 , 1)|` and Z = `|(5 , -1),(3 , 2)|` , prove that X (Y + Z) = XY + XZ
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
If A = `[(2, a),(-3, 5)] and "B" = [(-2, 3),(7, b)], "C" = [(c, 9),(-1, -11)]` and 5A + 2B = C, find the values of a,b,c
The additive inverse of matrix A + B, where A = `[(4, 2),(7, -2)]` and B = `[(-2, 1),(3, -4)]` is ______.