Advertisements
Advertisements
Question
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
Solution
A = `[(-3, 6),(0, -9)]`
At = `[(-3, 0),(6, -9)]`
`1/2 A - 1/3 A^t = 1/2[(-3, 6),(0, -9)] - 1/3[(-3, 0),(6, -9)]`
= `[((-3)/2, 3),(0, (-9)/2)] - [(-1, 0),(2, -3)]`
= `[(-3/2 - (-1), 3 - 0),(0 - 2, -9/2 - (-3))]`
= `[(-3/2 + 1, 3),(-2, -9/2 + 3)]`
= `[((-1)/2, 3),(-2, (-3)/2)]`
APPEARS IN
RELATED QUESTIONS
Find x, y if `[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
X + B = C – A
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2A + 3At
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AB
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find B2A
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1), (1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal CA + B
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
If `[(5, 2),(-1, y + 1)] -2 [(1, 2x - 1),(3, -2)] = [(3, -8),(-7, 2)]` Find the values of x and y
If `[(a, 3),(4, 2)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]` Find the value of a,b and c
Given A = `[(4, 7),(3, -2)]` and B = `[(1, 2),(-1, 4)]`, then A – 2B is ______.