Advertisements
Advertisements
प्रश्न
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
उत्तर
A = `[(-3, 6),(0, -9)]`
At = `[(-3, 0),(6, -9)]`
`1/2 A - 1/3 A^t = 1/2[(-3, 6),(0, -9)] - 1/3[(-3, 0),(6, -9)]`
= `[((-3)/2, 3),(0, (-9)/2)] - [(-1, 0),(2, -3)]`
= `[(-3/2 - (-1), 3 - 0),(0 - 2, -9/2 - (-3))]`
= `[(-3/2 + 1, 3),(-2, -9/2 + 3)]`
= `[((-1)/2, 3),(-2, (-3)/2)]`
APPEARS IN
संबंधित प्रश्न
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
X + B = C – A
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
X – B = A
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find 2A – 3B + C
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find IB
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find A2
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
If A = `[(2, a),(-3, 5)] and "B" = [(-2, 3),(7, b)], "C" = [(c, 9),(-1, -11)]` and 5A + 2B = C, find the values of a,b,c
If A = `[(5, -5),(3, -3)]` and B = `[(-5, 5),(-3, 3)]`; the value of matrix (A – B) is ______.