Advertisements
Advertisements
Question
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find B2A
Solution
B2 = `[(1, -1),(3, 2)][(1, -1), (3, 2)]`
= `[(1 xx 1 + (-1) xx 3, 1 xx -1 + (-1) xx 2),(3 xx 1 + 2 xx 3, 3 xx (-1) + 2 xx 2)]`
= `[(1- 3, -1-2),(3 + 6, -3 + 4)]`
= `[(-2 ,-3),(9, 1)]`
B2A = `[(-2, -3),(9, 1)][(0, 2),(5, -2)]`
= `[(-2 xx 0 + (-3) xx 5, (-2) xx 2 + (-3) xx (-2)),(9 xx 0 + 1 xx 5, 9 xx 2 + 1 xx (-2))]`
= `[(0 - 15, -4 + 6),(0+ 5, 18 - 2)]`
= `[(-15, 2),(5, 16)]`
APPEARS IN
RELATED QUESTIONS
Write the additive inverse of matrices A, B and C:
Where `A = [(6, -5)]; B = [(-2, 0),(4, -1)]` and `C = [(-7), (4)]`.
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
If `A = [(1, 4),(1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `A^2 + B^2`
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
Find X and Y If X + Y = `[(7, 0),(2, 5)]` and X – Y = `[(3, 0),(0, 3)]`
If A = `[(7, 5),(-3, 3)]` and B = `[(-2, 5),(1, 0)]`, then the matrix P (such that A + P = B) is ______.
If A = `[(1, 0),(1, 1)]`, B = `[(0, 1),(1, 0)]` and C = `[(1, 1),(0, 0)]`, the matrix A2 + 2B – 3C is ______.