Advertisements
Advertisements
Question
Find X and Y If X + Y = `[(7, 0),(2, 5)]` and X – Y = `[(3, 0),(0, 3)]`
Solution
X + Y = `[(7, 0),(2, 5)]` .....(i)
X – Y = `[(3, 0),(0, 3)]` .....(ii)
Adding (i) and (ii) we get,
2x = `[(7, 0),(2, 5)] + [(3, 0),(0, 3)]`
= `[(7 + 3, 0 + 0),(2 + 0, 5 + 3)]`
= `[(10, 0),(2, 8)]`
∴ x = `(1)/(2)[(10, 0),(2, 8)]`
= `[(5, 0),(1, 4)]`
Subtracting (ii) from (i),
2y = `[(7, 0),(2, 5)] - [(3, 0),(0, 3)]`
⇒ 2y = `[(7 - 3, 0 - 0),(2 - 0, 5 - 3)]`
= `[(4, 0),(2, 2)]`
∴ y = `(1)/(2)[(4, 0),(2, 2)]`
= `[(2, 0),(1, 1)]`
Hence x = `[(5, 0),(1, 4)], "y" = [(2, 0),(1, 1)]`.
APPEARS IN
RELATED QUESTIONS
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A + X = B
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find 2A – 3B + C
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find IB
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2 – AB + 2B
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1),(1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal A + CB
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
If A = `|(15,7),(13,8)|` and B = `|(16,12),(27,11)|`, find matrix X such that 2A - X = B.
If A = `[(0, -1),(1, 2)]` and B = `[(1, 2),(-1, 1)]` Find the matrix X if : X – 3B = 2A
If A = `[(3, -5),(-4, 2)]` find A2 – 5A – 14I
Where I is unit matrix of order 2 x 2