Advertisements
Advertisements
Question
Given A = `[(2, -6),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(4, 0),(0, 2)]`. Find the matrix X such that A + 2X = 2B + C.
Solution
A = `[(2, -6),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(4, 0),(0, 2)]`
Let X = `[(x , y),(z, t)]`
A + 2X = 2B + C
2X = 2B + C – A
`2[(x, y),(z, t)] = 2[(-3, 2),(4, 0)] + [(4, 0),(0, 2)] - [(2, -6),(2, 0)]`
= `[(-6, 4),(8, 0)] + [(4, 0),(0, 2)] - [(2, -6),(2, 0)]`
= `[(-6 + 4 - 2, 4 + 0 + 6),(8 + 0 - 2, 0 + 2 - 0)]`
= `[(-4 , 10),(6, 2)]`
∴ `2[(x, y),(z, t)] = [(-4, 10),(6, 2)]`
∴ `[(x, y),(z, t)] = (1)/(2)[(-4, 10),(6, 2)]`
= `[(-2, 5),(3, 1)]`
RELATED QUESTIONS
Write the additive inverse of matrices A, B and C:
Where `A = [(6, -5)]; B = [(-2, 0),(4, -1)]` and `C = [(-7), (4)]`.
Given `A = [(-1, 0),(2,-4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A – X = B
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `A^t - 1/3 A`
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1), (1, 1)]`. Solve for matrix X:
3X + B + 2A = 0
Evaluate if possible `[(6, 4),(3, -1)][(-1),(3)]`
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
If A = `[(1, 4),(2, 1)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, simplify : A2 + BC.
Evaluate the following:
`|(3 , 2)| |(-1) , (3)|`
Given that M = `[(2, 0),(1, 2)]` and N = `[(2, 0),(-1,2)]`, find M + 2N
If A = `[(5, 5),(4, 0)]`, B = `[(3, 2),(1, 4)]` and C = `[(-2, 3),(2, 1)]` then matrix (A + B – C) is ______.