Advertisements
Advertisements
Question
Evaluate the following:
`|(3 , 2)| |(-1) , (3)|`
Solution
`|(3 , 2)|_(1 xx 2) |(-1) , (3)|_(2 xx 1)`
`= |3 xx -1 + 2 xx 3|`
`= |-3 + 6|`
`= |3|_(1 xx 1)`
APPEARS IN
RELATED QUESTIONS
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
X + 2A = B
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AB
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
Find x and y, if `[(3x, 8)][(1, 4),(3, 7)] - 3[(2, -7)] = 5[(3, 2y)]`
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
Let A be a 2 x 2 matrix and let I be an identity matrix of the order 2 x 2. Prove that AI = IA = A.
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(7, 0),(10, 5)]` Find the values of x and y
If A = `[(3, -5),(-4, 2)]` find A2 – 5A – 14I
Where I is unit matrix of order 2 x 2
If A = `[(5, 5),(4, 0)]`, B = `[(3, 2),(1, 4)]` and C = `[(-2, 3),(2, 1)]` then matrix (A + B – C) is ______.