Advertisements
Advertisements
प्रश्न
Find X and Y If X + Y = `[(7, 0),(2, 5)]` and X – Y = `[(3, 0),(0, 3)]`
उत्तर
X + Y = `[(7, 0),(2, 5)]` .....(i)
X – Y = `[(3, 0),(0, 3)]` .....(ii)
Adding (i) and (ii) we get,
2x = `[(7, 0),(2, 5)] + [(3, 0),(0, 3)]`
= `[(7 + 3, 0 + 0),(2 + 0, 5 + 3)]`
= `[(10, 0),(2, 8)]`
∴ x = `(1)/(2)[(10, 0),(2, 8)]`
= `[(5, 0),(1, 4)]`
Subtracting (ii) from (i),
2y = `[(7, 0),(2, 5)] - [(3, 0),(0, 3)]`
⇒ 2y = `[(7 - 3, 0 - 0),(2 - 0, 5 - 3)]`
= `[(4, 0),(2, 2)]`
∴ y = `(1)/(2)[(4, 0),(2, 2)]`
= `[(2, 0),(1, 1)]`
Hence x = `[(5, 0),(1, 4)], "y" = [(2, 0),(1, 1)]`.
APPEARS IN
संबंधित प्रश्न
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
X + 2A = B
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find IB
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
If `A = [(1, 4),(1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `A^2 + B^2`
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
If `|(2"a" + "b" , "c"),("d" , 3"a" - "b")|` = `|(4 , 3"a"),(7 , 6)|` , find the values of a , b , c and d.
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
If A = `[(1, 0),(1, 1)]`, B = `[(0, 1),(1, 0)]` and C = `[(1, 1),(0, 0)]`, the matrix A2 + 2B – 3C is ______.