Advertisements
Advertisements
Question
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
Solution
Let C = `[(a),(b)]` then
AC = B
⇒ `[(3 , 1),(-1 , 2)][(a),(b)] = [(7),(0)]`
⇒ `[(3a + b),(-a + 2b)] = [(7),(0)]`
⇒ 3a + b = 7 ...(1)
- a + 2b = 0 ...(2)
From equation (1),
6a + 2b = 14 ...(3)
From (3) - (2) given
7a = 14
⇒ a = 2
Put a = 2 in (1), we get
6 + b = 7
⇒ b = 7 - 6 = 1
∴ C = `[(2),(1)]`.
APPEARS IN
RELATED QUESTIONS
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible BA
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find AB.
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
If A = `[(2, 1),(0, -2)] and "B" = [(4, 1),(-3, -2)], "C" = [(-3, 2),(-1, 4)]` Find A2 + AC – 5B
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.
Choose the correct answer from the given four options :
If A = `[(2, -2),(-2, 2)]`, then A2 = pA, then the value of p is