Advertisements
Advertisements
Question
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
Solution
BA = `[(0, -b),(1, 0)][(a, 0),(0, 2)]`
= `[(0 xx a + (-b) xx 0, 0 xx 0 + (-b) xx 2),(1 xx a + 0 xx 0, 1 xx 0 + 0 xx 2)]`
= `[(0 - 0,0 - 2b),(a + 0, 0 + 0)]`
= `[(0, -2b), (a, 0)]`
M2 = `[(1 ,-1),(1, 1)][(1, -1),(1, 1)]`
= `[(1 xx 1 + (-1) xx 1, 1 xx (-1) + (-1 xx 1)),(1 xx 1 + 1 xx 1, 1 xx (-1) + 1 xx 1)]`
= `[(1 - 1, -1 - 1),(1 + 1, -1 + 1)]`
= `[(0, -2),(2, 0)]`
Given, BA = M2
`[(0, -2b),(a, 0)] = [(0, -2),(2, 0)]`
Comparing the corresponding elements, we get,
a = 2
–2b = –2 `=>` b = 1
APPEARS IN
RELATED QUESTIONS
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
Find x and y, if `[(4, 3x),(x, -2)][(5), (1)] = [(y),(8)]`
If A =` [(1,-2 ,1),(2,1,3)]and B=[(2,1),(3,2),(1,1)]`
would it be possible to form the product matrix BA? If so, compute BA; if not give a reason
why it is not possible.
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
If A = `[(2, 1),(0, -2)] and "B" = [(4, 1),(-3, -2)], "C" = [(-3, 2),(-1, 4)]` Find A2 + AC – 5B
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
Choose the correct answer from the given four options :
If A = `[(0, 1),(1, 0)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(0, 0),(1, 0)]`, then A2 =
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: (A + B)(A – B)