Advertisements
Advertisements
प्रश्न
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
उत्तर
BA = `[(0, -b),(1, 0)][(a, 0),(0, 2)]`
= `[(0 xx a + (-b) xx 0, 0 xx 0 + (-b) xx 2),(1 xx a + 0 xx 0, 1 xx 0 + 0 xx 2)]`
= `[(0 - 0,0 - 2b),(a + 0, 0 + 0)]`
= `[(0, -2b), (a, 0)]`
M2 = `[(1 ,-1),(1, 1)][(1, -1),(1, 1)]`
= `[(1 xx 1 + (-1) xx 1, 1 xx (-1) + (-1 xx 1)),(1 xx 1 + 1 xx 1, 1 xx (-1) + 1 xx 1)]`
= `[(1 - 1, -1 - 1),(1 + 1, -1 + 1)]`
= `[(0, -2),(2, 0)]`
Given, BA = M2
`[(0, -2b),(a, 0)] = [(0, -2),(2, 0)]`
Comparing the corresponding elements, we get,
a = 2
–2b = –2 `=>` b = 1
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
If A =` [(1,-2 ,1),(2,1,3)]and B=[(2,1),(3,2),(1,1)]`
would it be possible to form the product matrix BA? If so, compute BA; if not give a reason
why it is not possible.
Construct a 2 x 2 matrix whose elements aij are given by
aij = 2i - j
If A = `[(3, 5),(4, -2)] and "B" = [(2),(4)]` , is the product AB possible ? Give a reason. If yes, find AB.
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
If `[(3, 4),(5, 5)] = [(a, b),(c, d)] [(1, 0),(0, 1)]`write down the values of a,b,c and d
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B
If `[(a, 1),(1, 0)] [(4, 3),(-3, 2)] = [(b, 11),(4, c)]` find a,b and c
If A = `[(1, 4),(1, 0)], "B" = [(2, 1),(3, -1)] and "C" = [(2, 3),(0, 5)]` compute (AB)C = (CB)A ?