Advertisements
Advertisements
प्रश्न
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
उत्तर
BA = `[(0, -b),(1, 0)][(a, 0),(0, 2)]`
= `[(0 xx a + (-b) xx 0, 0 xx 0 + (-b) xx 2),(1 xx a + 0 xx 0, 1 xx 0 + 0 xx 2)]`
= `[(0 - 0,0 - 2b),(a + 0, 0 + 0)]`
= `[(0, -2b), (a, 0)]`
M2 = `[(1 ,-1),(1, 1)][(1, -1),(1, 1)]`
= `[(1 xx 1 + (-1) xx 1, 1 xx (-1) + (-1 xx 1)),(1 xx 1 + 1 xx 1, 1 xx (-1) + 1 xx 1)]`
= `[(1 - 1, -1 - 1),(1 + 1, -1 + 1)]`
= `[(0, -2),(2, 0)]`
Given, BA = M2
`[(0, -2b),(a, 0)] = [(0, -2),(2, 0)]`
Comparing the corresponding elements, we get,
a = 2
–2b = –2 `=>` b = 1
APPEARS IN
संबंधित प्रश्न
In the given case below find
a) The order of matrix M.
b) The matrix M
`M xx [(1,1),(0, 2)] = [1, 2]`
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
Find the 2 x 2 matrix X which satisfies the equation.
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
If A = `[(2, 5),(1, 3)] "B" = [(1, -1),(-3, 2)]` , find AB and BA, Is AB = BA ?
If A = `[(2, 1),(0, -2)] and "B" = [(4, 1),(-3, -2)], "C" = [(-3, 2),(-1, 4)]` Find A2 + AC – 5B
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B
Choose the correct answer from the given four options :
If A = `[(3, 1),(-1, 2)]`, then A2 =