Advertisements
Advertisements
प्रश्न
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
उत्तर
Given
`[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
⇒ `[(0 + 35, 6 + 21),(0 + 20, 4 + 12)] + 2 "X" = [(1, -5),(-4, 6)]`
⇒ `[(35, 27),(20, 16)] + 2"X" = [(1, -5),(-4, 6)]`
2X = `-[(35, 27),(20, 16)] + [(1, -5),(-4, 6)]`
= `[(-34, -32),(-24, -10)]`
X = `(1)/(2)[(-34, -32),(-24, -10)]`
= `[(-17, -16),(-12, -5)]`.
APPEARS IN
संबंधित प्रश्न
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible A2
In the given case below find
a) The order of matrix M.
b) The matrix M
`M xx [(1,1),(0, 2)] = [1, 2]`
If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
Construct a 2 x 2 matrix whose elements aij are given by `((i + 2j)^2)/(2)`.
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
If A = `[(1, 2),(2, 1)] and "B" = [(2, 1),(1, 2)]`, fin A(BA)
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
Solve the matrix equation : `[(4),(1)],"X" = [(-4, 8),(-1, 2)]`