Advertisements
Advertisements
प्रश्न
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
उत्तर
A = `[(2, 12),(0, 1)]` and
B = `[(4, x),(0, 1)]`
A2 = B
⇒ A x A = B
⇒ `[(2, 12),(0, 1)][(2, 12),(0, 1)] = [(4, x),(0, 1)]`
⇒ `[(2 xx 2 + 12 xx 0, 2 xx 12 + 12 xx 1),(0 xx 2 + 1 xx 0, 0 xx 12 + 1 xx 1)] = [(4, x),(0, 1)]`
⇒ `[(4 + 0, 24 + 12),(0 + 0, 0 + 1)] = [(4, x),(0, 1)]`
⇒ `[(4, 36),(0, 1)] = [(4, x),(0, 1)]`
Comparing the corresponding elements of two equal matrices, x = 36.
APPEARS IN
संबंधित प्रश्न
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Solve for x and y:
`[(2, 5),(5, 2)][(x),(y)] = [(-7),(14)]`
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
If A = `[(1 , -2),(2, -1)] and "B" = [(3, 2),(-2, 1)]` Find 2B – A2
If A = `[(2, 1),(0, -2)] and "B" = [(4, 1),(-3, -2)], "C" = [(-3, 2),(-1, 4)]` Find A2 + AC – 5B
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
If `[(1, 3),(0, 0)] [(2),(-1)] = [(x),(0)]` Find the value of x
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
If matrix A = `[(2, 2),(0, 2)]` and A2 = `[(4, x),(0, 4)]`, then the value of x is ______.