Advertisements
Advertisements
Question
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
Solution
A = `[(2, 12),(0, 1)]` and
B = `[(4, x),(0, 1)]`
A2 = B
⇒ A x A = B
⇒ `[(2, 12),(0, 1)][(2, 12),(0, 1)] = [(4, x),(0, 1)]`
⇒ `[(2 xx 2 + 12 xx 0, 2 xx 12 + 12 xx 1),(0 xx 2 + 1 xx 0, 0 xx 12 + 1 xx 1)] = [(4, x),(0, 1)]`
⇒ `[(4 + 0, 24 + 12),(0 + 0, 0 + 1)] = [(4, x),(0, 1)]`
⇒ `[(4, 36),(0, 1)] = [(4, x),(0, 1)]`
Comparing the corresponding elements of two equal matrices, x = 36.
APPEARS IN
RELATED QUESTIONS
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(4, 3)]` and C = `[(4, 3),(1, 2)]`, find:
- (AB)C
- A(BC)
Is A(BC) = (AB)C?
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible A2
Solve for x and y:
`[(2, 5),(5, 2)][(x),(y)] = [(-7),(14)]`
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the order of the matrix X.
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
If `[(1, 3),(0, 0)] [(2),(-1)] = [(x),(0)]` Find the value of x
If `[(1, 2),(3, 3)] [(x, 0),(0, y)] = [(x, 0),(9, 0)]`find the values of x and y