Advertisements
Advertisements
Question
If `[(1, 3),(0, 0)] [(2),(-1)] = [(x),(0)]` Find the value of x
Solution
`[(1, 3),(0, 0)] [(2),(-1)] = [(x),(0)]`
⇒ `[(2, -3),(0, 0)] = [(x),(0)]`
⇒ `[(-1),(0)] = [(x),(0)]`
Comparing the corresponding elements
x = –1.
APPEARS IN
RELATED QUESTIONS
Find x and y, if `[(4, 3x),(x, -2)][(5), (1)] = [(y),(8)]`
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find BA.
If A = `[(3, 5),(4, -2)] and "B" = [(2),(4)]` , is the product AB possible ? Give a reason. If yes, find AB.
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.
Choose the correct answer from the given four options :
If A = `[(0, 0),(1, 0)]`, then A2 =