Advertisements
Advertisements
Question
If A = `[(1, 1),(x, x)]`,find the value of x, so that A2 – 0
Solution
Given
A = `[(1, 1),(x, x)]`
A2 = `[(1, 1),(x, x)][(1, 1),(x, x)]`
= `[(1 + x, 1 + x),(x + x^2, x + x^2)]`
∵ A2 = 0
∴ = `[(1 + x, 1 + x),(x + x^2, x + x^2)]` = 0
= `[(0, 0),(0, 0)]`
Comparing
1 + x = 0
⇒ x = –1.
APPEARS IN
RELATED QUESTIONS
If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
If A =` [(1,-2 ,1),(2,1,3)]and B=[(2,1),(3,2),(1,1)]`
would it be possible to form the product matrix BA? If so, compute BA; if not give a reason
why it is not possible.
If P = `[(4, 6),(2 ,- 8)], "Q" = [(2, -3),(-1, 1)]` Find 2PQ
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal. A + CB
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
Choose the correct answer from the given four options :
If A = `[(0, 1),(1, 0)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(2, -2),(-2, 2)]`, then A2 = pA, then the value of p is
If matrix A = `[(2, 2),(0, 2)]` and A2 = `[(4, x),(0, 4)]`, then the value of x is ______.