English

If M = [41-12], show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix. - Mathematics

Advertisements
Advertisements

Question

If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.

Sum

Solution

M2 = `[(4, 1),(-1, 2)][(4, 1),(-1, 2)]`

= `[(4 xx 4 + 1 xx (-1), 4 xx 1 + 1 xx 2),(-1 xx 4 + 2 xx (-1), -1 xx 1 + 2 xx 2)]`

= `[(16 - 1,4 + 2),(-4 - 2, -1 + 4)]`

= `[(15, 6),(-6, 3)]`

6M – M2 = `6[(4, 1),(-1, 2)] - [(15, 6),(-6, 3)]`

= `[(24, 6),(-6,12)] - [(15,6),(-6,3)]`

= `[(24 - 15, 6 - 6),(-6 - (-6), 12 - 3)]`

= `[(9, 0),(0, 9)]`

= `9[(1, 0),(0, 1)]`

= 9I

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Matrices - Exercise 9 (C) [Page 130]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 9 Matrices
Exercise 9 (C) | Q 28 | Page 130

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×