Advertisements
Advertisements
Question
Given martices A = `[(2, 1),(4, 2)] and "B" = [(3, 4),(-1, -2)], "C" = [(-3, 1),(0, -2)]` Find the products of (i) ABC (ii) ACB and state whether they are equal.
Solution
A = `[(2, 1),(4, 2)]`
B = `[(3, 4),(-1, -2)]`
C = `[(-3, 1),(0, -2)]`
ABC = `[(2, 1),(4, 2)] xx [(3, 4),(-1, -2)] xx [(-3, 1),(0, -2)]`
= `[(6 - 1, 8 - 2),(12 - 2, 16 - 4)][(-3, 1),(0, -2)]`
= `[(5, 6),(10, 12)] xx [(-3, 1),(0, -2)]`
= `[(-15 + 0, 5 - 12),(-30 + 0, 10 - 24)]`
= `[(-15, -7),(-30, -14)]`
ACB = `[(2, 1),(4, 2)][(-3, 1),(0, -2)] xx [(3, 4),(-1, -2)]`
= `[(-6 + 0, 2 - 2),(-12 + 10, 4 - 4)] xx [(3, 4),(-1, -2)]`
= `[(-6, 0),(-12, 0)] xx [(3, 4),(-1, -2)]`
= `[(-18 + 0, -24 + 0),(-36 + 0, -48 + 0)]`
= `[(-18, -24),(-36, -48)]`
∴ ABC ≠ ACB.
APPEARS IN
RELATED QUESTIONS
If M = `[(1, 2),(2, 1)]` and I is a unit matrix of the same order as that of M; show that: M2 = 2M + 3I.
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
`If A = [(1, -2 ,1), (2,1,3)] and B= [(2,1),(3,2),(1,1)]`;
Write down the product matrix AB.
`[(2sin 30° ,- 2 cos 60°),(- cot 45° , sin 90°)]`
`[(tan 45° , sec 60°),("cosec" 30° , cos 0°)]`
Construct a 2 x 2 matrix whose elements aij are given by
aij = 2i - j
Construct a 2 x 2 matrix whose elements aij are given by `((i + 2j)^2)/(2)`.
Find the 2 x 2 matrix X which satisfies the equation.
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
If P = `[(2, 6),(3, 9)]` and Q = `[(3, x),(y, 2)]`, find x and y such that PQ = null matrix.