Advertisements
Advertisements
प्रश्न
Given martices A = `[(2, 1),(4, 2)] and "B" = [(3, 4),(-1, -2)], "C" = [(-3, 1),(0, -2)]` Find the products of (i) ABC (ii) ACB and state whether they are equal.
उत्तर
A = `[(2, 1),(4, 2)]`
B = `[(3, 4),(-1, -2)]`
C = `[(-3, 1),(0, -2)]`
ABC = `[(2, 1),(4, 2)] xx [(3, 4),(-1, -2)] xx [(-3, 1),(0, -2)]`
= `[(6 - 1, 8 - 2),(12 - 2, 16 - 4)][(-3, 1),(0, -2)]`
= `[(5, 6),(10, 12)] xx [(-3, 1),(0, -2)]`
= `[(-15 + 0, 5 - 12),(-30 + 0, 10 - 24)]`
= `[(-15, -7),(-30, -14)]`
ACB = `[(2, 1),(4, 2)][(-3, 1),(0, -2)] xx [(3, 4),(-1, -2)]`
= `[(-6 + 0, 2 - 2),(-12 + 10, 4 - 4)] xx [(3, 4),(-1, -2)]`
= `[(-6, 0),(-12, 0)] xx [(3, 4),(-1, -2)]`
= `[(-18 + 0, -24 + 0),(-36 + 0, -48 + 0)]`
= `[(-18, -24),(-36, -48)]`
∴ ABC ≠ ACB.
APPEARS IN
संबंधित प्रश्न
If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.
Construct a 2 x 2 matrix whose elements aij are given by
aij = 2i - j
If A = `[(3, 5),(4, -2)] and "B" = [(2),(4)]` , is the product AB possible ? Give a reason. If yes, find AB.
If A = `[(2, 5),(1, 3)] "B" = [(1, -1),(-3, 2)]` , find AB and BA, Is AB = BA ?
If A = `[(3, 7),(2, 4)], "B" = [(0, 2),(5, 3)] and "C" = [(1, -5),(-4, 6)]` Find AB – 5C
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
If `[(1, 3),(0, 0)] [(2),(-1)] = [(x),(0)]` Find the value of x
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
Choose the correct answer from the given four options :
If A = `[(3, 1),(-1, 2)]`, then A2 =