Advertisements
Advertisements
प्रश्न
Given martices A = `[(2, 1),(4, 2)] and "B" = [(3, 4),(-1, -2)], "C" = [(-3, 1),(0, -2)]` Find the products of (i) ABC (ii) ACB and state whether they are equal.
उत्तर
A = `[(2, 1),(4, 2)]`
B = `[(3, 4),(-1, -2)]`
C = `[(-3, 1),(0, -2)]`
ABC = `[(2, 1),(4, 2)] xx [(3, 4),(-1, -2)] xx [(-3, 1),(0, -2)]`
= `[(6 - 1, 8 - 2),(12 - 2, 16 - 4)][(-3, 1),(0, -2)]`
= `[(5, 6),(10, 12)] xx [(-3, 1),(0, -2)]`
= `[(-15 + 0, 5 - 12),(-30 + 0, 10 - 24)]`
= `[(-15, -7),(-30, -14)]`
ACB = `[(2, 1),(4, 2)][(-3, 1),(0, -2)] xx [(3, 4),(-1, -2)]`
= `[(-6 + 0, 2 - 2),(-12 + 10, 4 - 4)] xx [(3, 4),(-1, -2)]`
= `[(-6, 0),(-12, 0)] xx [(3, 4),(-1, -2)]`
= `[(-18 + 0, -24 + 0),(-36 + 0, -48 + 0)]`
= `[(-18, -24),(-36, -48)]`
∴ ABC ≠ ACB.
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible A2
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B
If `[(a, 1),(1, 0)] [(4, 3),(-3, 2)] = [(b, 11),(4, c)]` find a,b and c
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.