Advertisements
Advertisements
प्रश्न
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.
उत्तर
Given A = `[(1, 3),(2, 4)]`,
B = `[(1, 2),(2, 4)]`,
C = `[(4, 1),(1, 5)]`
and I = `[(1, 0),(0, 1)]`
Then B + C = `[(1, 2),(2, 4)] + [(4, 1),(1, 5)]`
= `[(5, 3),(3, 9)]`
and A(B + C) = `[(1, 3),(2, 4)][(5, 3),(3, 9)]`
= `[(5 + 9, 3 + 27),(10 + 12, 6 + 36)]`
= `[(14, 30),(22, 42)]`
Now A(B + C) – 14I = `[(14, 30),(22, 42)] - [(14, 0),(0, 14)]`
= `[(14 - 14, 30 - 0),(22 - 0, 42 - 14)]`
= `[(0, 30),(22, 28)]`
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
If A = `[(2, 5),(1, 3)] "B" = [(1, -1),(-3, 2)]` , find AB and BA, Is AB = BA ?
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.
Choose the correct answer from the given four options :
If A = `[(0, 0),(1, 0)]`, then A2 =
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: (A + B)(A – B)