Advertisements
Advertisements
प्रश्न
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
उत्तर
i. AB = `[(2, 1),(4, 2)][(3, 4),(-1, -2)]`
= `[(6 - 1, 8 - 2),(12 - 2, 16 - 4)]`
= `[(5, 6),(10, 12)]`
ABC = `[(5, 6),(10, 12)][(-3, 1),(0, -2)]`
= `[(-15 + 0, 5 - 12),(-30 + 0, 10 - 24)]`
= `[(-15, -7),(-30, -14)]`
ii. AC = `[(2, 1),(4, 2)][(-3, 1),(0, -2)]`
= `[(-6 + 0, 2 -2),(-12 + 0, 4 - 4)]`
= `[(-6, 0),(-12, 0)]`
ACB = `[(-6, 0),(-12, 0)][(3, 4), (-1, -2)]`
= `[(-18 - 0, -24 - 0),(-36 - 0, -48 - 0)]`
= `[(-18, -24),(-36, -48)]`
Hence, ABC = ACB.
APPEARS IN
संबंधित प्रश्न
If `P = [(2,6),(3,9)]` and `Q = [(3,x),(y, 2)]` find x and y such that PQ = null matrix
`If A = [(1, -2 ,1), (2,1,3)] and B= [(2,1),(3,2),(1,1)]`;
Write down the product matrix AB.
If A = `[(3, 5),(4, -2)] and "B" = [(2),(4)]` , is the product AB possible ? Give a reason. If yes, find AB.
If P = `[(4, 6),(2 ,- 8)], "Q" = [(2, -3),(-1, 1)]` Find 2PQ
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal.CA + B
If A = `[(1 , -2),(2, -1)] and "B" = [(3, 2),(-2, 1)]` Find 2B – A2
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
If `[(3, 4),(5, 5)] = [(a, b),(c, d)] [(1, 0),(0, 1)]`write down the values of a,b,c and d
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =