Advertisements
Advertisements
प्रश्न
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
उत्तर
i. AB = `[(2, 1),(4, 2)][(3, 4),(-1, -2)]`
= `[(6 - 1, 8 - 2),(12 - 2, 16 - 4)]`
= `[(5, 6),(10, 12)]`
ABC = `[(5, 6),(10, 12)][(-3, 1),(0, -2)]`
= `[(-15 + 0, 5 - 12),(-30 + 0, 10 - 24)]`
= `[(-15, -7),(-30, -14)]`
ii. AC = `[(2, 1),(4, 2)][(-3, 1),(0, -2)]`
= `[(-6 + 0, 2 -2),(-12 + 0, 4 - 4)]`
= `[(-6, 0),(-12, 0)]`
ACB = `[(-6, 0),(-12, 0)][(3, 4), (-1, -2)]`
= `[(-18 - 0, -24 - 0),(-36 - 0, -48 - 0)]`
= `[(-18, -24),(-36, -48)]`
Hence, ABC = ACB.
APPEARS IN
संबंधित प्रश्न
Find x and y, if `[(4, 3x),(x, -2)][(5), (1)] = [(y),(8)]`
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
If A = `[(1, 2),(2, 1)] and "B" = [(2, 1),(1, 2)]`, fin A(BA)
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal. A + CB
If A = `[(1 , -2),(2, -1)] and "B" = [(3, 2),(-2, 1)]` Find 2B – A2
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
If `[(a, 1),(1, 0)] [(4, 3),(-3, 2)] = [(b, 11),(4, c)]` find a,b and c
If A = `[(1, 4),(0, -1)], "B" = [(2, x),(0, -1/2)]`find the value of x if AB = BA
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.