Advertisements
Advertisements
प्रश्न
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal. A + CB
उत्तर
A + CB
= `[(1, 2),(3, 4)] + [(-2, -3),(0, 1)] xx [(6, 1),(1, 1)]`
= `[(1, 2),(3, 4)] + [(-12 - 3, -2 - 3),(0 + 1, 0 + 1)]`
= `[(1, 2),(3, 4)] + [(-15, -5),(1, 1)]`
= `[(1 - 15, 2 - 5),(3 + 1, 4 + 1)]`
= `[(-14, -3),(4, 5)]`
We can say that CA + B ≠ A + CB.
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible BA
Solve for x and y:
`[(2, 5),(5, 2)][(x),(y)] = [(-7),(14)]`
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
`If A = [(1, -2 ,1), (2,1,3)] and B= [(2,1),(3,2),(1,1)]`;
Write down the product matrix AB.
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the matrix X.
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
Choose the correct answer from the given four options :
If A = `[(0, 0),(1, 0)]`, then A2 =
If matrix A = `[(2, 2),(0, 2)]` and A2 = `[(4, x),(0, 4)]`, then the value of x is ______.