Advertisements
Advertisements
प्रश्न
If `[(a, 1),(1, 0)] [(4, 3),(-3, 2)] = [(b, 11),(4, c)]` find a,b and c
उत्तर
`[(a, 1),(1, 0)] [(4, 3),(-3, 2)] = [(b, 11),(4, c)]`
⇒ `[(4a - 3, 3a + 2),(4 + 0, 3 + 0)] = [(b, 11),(4,c)]`
⇒ `[(4a - 3, 3a + 2),(4, 3)] = [(b, 11),(4,c)]`
Comparing the corresponding elements
3a + 2 = 11
⇒ 3a = 11 – 2 = 9
∴ a = `(9)/(3)` = 3
4a – 3 = b
⇒ b = 4 x 3 – 3
= 12 – 3
= 9
3 = c
Hence a = 3, b = 9, c = 3.
APPEARS IN
संबंधित प्रश्न
In the given case below find
a) The order of matrix M.
b) The matrix M
`M xx [(1,1),(0, 2)] = [1, 2]`
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
If A = `[(1, 2),(2, 1)] and "B" = [(2, 1),(1, 2)]`, fin A(BA)
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
If A = `[(1, 2),(2, 3)] and "B" = [(2, 1),(3, 2)], "C" = [(1, 3),(3, 1)]` find the matrix C(B – A)
If A = `[(2, 1),(0, -2)] and "B" = [(4, 1),(-3, -2)], "C" = [(-3, 2),(-1, 4)]` Find A2 + AC – 5B
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: A2 – B2