Advertisements
Advertisements
प्रश्न
Construct a 2 x 2 matrix whose elements aij are given by
aij = 2i - j
उत्तर
We have aij = 2i - j
Now a11 = 2 x 1 - 1 = 1
a12 = 2 x 1 - 2 = 0
a21 = 2 x 2 - 1 = 3
a22 = 2 x 2 - 2 = 2
So the required matrix
A = `[(a_11 ,a_12),(a_21, a_22)]`
A = `[(1, 0),(3, 2)]`.
APPEARS IN
संबंधित प्रश्न
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find AB.
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
Given A = `[(1, 1),(8, 3)]`, evaluate A2 – 4A
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.
Choose the correct answer from the given four options :
If A = `[(0, 1),(1, 0)]`, then A2 =