Advertisements
Advertisements
प्रश्न
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
उत्तर
Given
A2 = `[(2, 3),(1, 2)][(2, 3),(1, 2)]`
= `[(4 + 3, 6 + 6),(2 + 2, 3 +4)]`
= `[(7, 12),(4, 7)]`
∵ A2 = xA + yl
⇒ `[(7, 12),(4, 7)] = x[(2, 3),(1, 2)] + y[(1, 0),(0, 1)]`
⇒ `[(7, 12),(4, 7)] = [(2x, 3x),(x, 2x)] + [(y, 0),(0, y)]`
= `[(2x + y, 3x),(x, 2x + y)]`
Comparing the corresponding elements
3x = 12
⇒ x = 4
2x + y = 7
⇒ 2x 4 + y = 7
⇒ 8 + y = 7
⇒ y = 7 – 8 = –1
Hence x = 4, y = –1.
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
In the given case below, find:
- the order of matrix M.
- the matrix M.
- `M xx [(1, 1),(0, 2)] = [(1, 2)]`
- `[(1, 4),(2, 1)] xx M = [(13), (5)]`
`[(2sin 30° ,- 2 cos 60°),(- cot 45° , sin 90°)]`
`[(tan 45° , sec 60°),("cosec" 30° , cos 0°)]`
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
Find the 2 x 2 matrix X which satisfies the equation.
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
If A = `[(1, 1),(x, x)]`,find the value of x, so that A2 – 0
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.
If A = `[(1, 4),(1, 0)], "B" = [(2, 1),(3, -1)] and "C" = [(2, 3),(0, 5)]` compute (AB)C = (CB)A ?