Advertisements
Advertisements
प्रश्न
Find the 2 x 2 matrix X which satisfies the equation.
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
उत्तर
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
⇒ `[(0 + 356 + 21),(0 + 204 + 12)] + 2X = [(1 , -5),(-4 , 6)]`
⇒ `[(35 , 27),(20 , 16)] + 2X = [(1 , -5),(-4 , 6)]`
⇒ 2X = `[(1 , -5),(-4 , 6)]`
`-[(35 , 27),(20 , 16)]`
⇒ 2X = `[(-34 , -32),(-24, -10)]`
⇒ X = `[((-34)/(2) (-32)/(2)), ((-24)/(2) (-10)/(2))]`
⇒ X = `[(-17 , -16),(-12 , -5)]`
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
If `[(3, 4),(5, 5)] = [(a, b),(c, d)] [(1, 0),(0, 1)]`write down the values of a,b,c and d
If A = `[(1, 4),(0, -1)], "B" = [(2, x),(0, -1/2)]`find the value of x if AB = BA
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.