Advertisements
Advertisements
प्रश्न
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
उत्तर
A = `[(-1, 1),(a, b)]`
A2= `[(-1, 1),(a, b)][(-1, 1),(a, b)]`
= `[((-1) xx (-1) + 1 xx a, -1 xx 1 + 1 xx b),(a xx (-1) + b xx a, a xx 1 + b xx b)]`
= `[(1 + a, -1 + b),(-a + ab, a + b^2)]`
It is given that A2 = I.
∴ `[(1 + a, -1 + b),(-a + ab, a + b^2)] = [(1, 0),(0, 1)]`
Comparing the corresponding elements, we get,
1 + a = 1
Therefore, a = 0
–1 + b = 0
Therefore, b = 1
APPEARS IN
संबंधित प्रश्न
If M = `[(1, 2),(2, 1)]` and I is a unit matrix of the same order as that of M; show that: M2 = 2M + 3I.
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
If A = `[(3, x),(0, 1)] and "B" = [(9, 16),(0, -y)]`find x and y when A2 = B
If `[(a, 1),(1, 0)] [(4, 3),(-3, 2)] = [(b, 11),(4, c)]` find a,b and c
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.