Advertisements
Advertisements
Question
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
Solution
Given
A2 = `[(2, 3),(1, 2)][(2, 3),(1, 2)]`
= `[(4 + 3, 6 + 6),(2 + 2, 3 +4)]`
= `[(7, 12),(4, 7)]`
∵ A2 = xA + yl
⇒ `[(7, 12),(4, 7)] = x[(2, 3),(1, 2)] + y[(1, 0),(0, 1)]`
⇒ `[(7, 12),(4, 7)] = [(2x, 3x),(x, 2x)] + [(y, 0),(0, y)]`
= `[(2x + y, 3x),(x, 2x + y)]`
Comparing the corresponding elements
3x = 12
⇒ x = 4
2x + y = 7
⇒ 2x 4 + y = 7
⇒ 8 + y = 7
⇒ y = 7 – 8 = –1
Hence x = 4, y = –1.
APPEARS IN
RELATED QUESTIONS
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the order of the matrix X.
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
If A = `[(2, 1),(0, -2)] and "B" = [(4, 1),(-3, -2)], "C" = [(-3, 2),(-1, 4)]` Find A2 + AC – 5B
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
Choose the correct answer from the given four options :
If A = `[(0, 1),(1, 0)]`, then A2 =
If A = `[(1, 4),(1, 0)], "B" = [(2, 1),(3, -1)] and "C" = [(2, 3),(0, 5)]` compute (AB)C = (CB)A ?
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: (A + B)(A – B)