Advertisements
Advertisements
Question
If A = `[(1, 4),(0, -1)], "B" = [(2, x),(0, -1/2)]`find the value of x if AB = BA
Solution
Given
A = `[(1, 4),(0, -1)][(2, x),(0, -1/2)]`
= `[(2 + 0, x - 2),(0 + 0, 0 + 1/2)]`
= `[(2, x - 2),(0, 1/2)]`
BA = `[(2, x),(0, -1/2)][(1, 4),(0, -1)]`
= `[(2 + 0, 8 - x),(0 + 0, 0 + 1/2)]`
= `[(2, 8 - x),(0, 1/2)]`
∵ AB = BA
∴ `[(2, x - 2),(0, 1/2)] = [(2, 8 - x),(0, 1/2)]`
Comparing the corresponding elements
x – 2 = 8 – x
⇒ x + x = 8 + 2
⇒ 2x = 10
∴ x = `(10)/(2)` = 5.
APPEARS IN
RELATED QUESTIONS
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
Find x and y, if `[(4, 3x),(x, -2)][(5), (1)] = [(y),(8)]`
`[(2sin 30° ,- 2 cos 60°),(- cot 45° , sin 90°)]`
`[(tan 45° , sec 60°),("cosec" 30° , cos 0°)]`
Construct a 2 x 2 matrix whose elements aij are given by `((i + 2j)^2)/(2)`.
If P = `[(4, 6),(2 ,- 8)], "Q" = [(2, -3),(-1, 1)]` Find 2PQ
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
Choose the correct answer from the given four options :
If A = `[(0, 1),(1, 0)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =