Advertisements
Advertisements
Question
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
Solution
Given
X2 – 2X – 3I = 0
Solution = `[(1, 2),(2, 1)]`
or
X = `[(1, 2),(2, 1)]`
∴ X2 = `[(1, 2),(2, 1)][(1, 2),(2, 1)]`
= `[(1 + 4, 2 + 2),(2 + 2, 4 + 1)]`
= `[(5, 4),(4, 5)]`
Now X2 - 2X - 3l
= `[(5, 4),(4, 5)] - 2[(1, 2),(2, 1)] - 3[(1, 0),(0, 1)]`
= `[(5, 4),(4, 5)] - [(2, 4),(4, 2)] - [(3, 0),(0, 3)]`
= `[(5 - 2 - 3, 4 - 4 + 0),(4 - 4 - 0, 5 - 2 - 3)]`
= `[(0, 0),(0, 0)]`
∴ X2 = 2X – 31 = 0
Hence proved.
APPEARS IN
RELATED QUESTIONS
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible A2
Solve for x and y:
`[(2, 5),(5, 2)][(x),(y)] = [(-7),(14)]`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
Given A = `[(1, 1),(8, 3)]`, evaluate A2 – 4A
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute A(B + C)
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
If `[(3, 4),(5, 5)] = [(a, b),(c, d)] [(1, 0),(0, 1)]`write down the values of a,b,c and d
Solve the matrix equation : `[(4),(1)],"X" = [(-4, 8),(-1, 2)]`
Choose the correct answer from the given four options :
If A = `[(0, 1),(1, 0)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =