हिंदी

Show that [1221] is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2

योग

उत्तर

Given
X2 – 2X – 3I = 0
Solution = `[(1, 2),(2, 1)]`
or

X = `[(1, 2),(2, 1)]`

∴ X2 = `[(1, 2),(2, 1)][(1, 2),(2, 1)]`

= `[(1 + 4, 2 + 2),(2 + 2, 4 + 1)]`

= `[(5, 4),(4, 5)]`
Now X2 - 2X - 3l
= `[(5, 4),(4, 5)] - 2[(1, 2),(2, 1)] - 3[(1, 0),(0, 1)]`

= `[(5, 4),(4, 5)] - [(2, 4),(4, 2)] - [(3, 0),(0, 3)]`

= `[(5 - 2 - 3, 4 - 4 + 0),(4 - 4 - 0, 5 - 2 - 3)]`

= `[(0, 0),(0, 0)]`
∴ X2 = 2X – 31 = 0
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Matrices - Exercise 8.3

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×