Advertisements
Advertisements
प्रश्न
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
उत्तर
Given
X2 – 2X – 3I = 0
Solution = `[(1, 2),(2, 1)]`
or
X = `[(1, 2),(2, 1)]`
∴ X2 = `[(1, 2),(2, 1)][(1, 2),(2, 1)]`
= `[(1 + 4, 2 + 2),(2 + 2, 4 + 1)]`
= `[(5, 4),(4, 5)]`
Now X2 - 2X - 3l
= `[(5, 4),(4, 5)] - 2[(1, 2),(2, 1)] - 3[(1, 0),(0, 1)]`
= `[(5, 4),(4, 5)] - [(2, 4),(4, 2)] - [(3, 0),(0, 3)]`
= `[(5 - 2 - 3, 4 - 4 + 0),(4 - 4 - 0, 5 - 2 - 3)]`
= `[(0, 0),(0, 0)]`
∴ X2 = 2X – 31 = 0
Hence proved.
APPEARS IN
संबंधित प्रश्न
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
Find x and y, if `[(4, 3x),(x, -2)][(5), (1)] = [(y),(8)]`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
If A = `[(1, 2),(2, 1)] and "B" = [(2, 1),(1, 2)]`, fin A(BA)
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
Find x and y if `[(-3, 2),(0, -5)] [(x),(2)] = [(5),(y)]`
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(3, 1),(-1, 2)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(2, -2),(-2, 2)]`, then A2 = pA, then the value of p is