Advertisements
Advertisements
प्रश्न
If P = `[(2, 6),(3, 9)]` and Q = `[(3, x),(y, 2)]`, find x and y such that PQ = null matrix.
उत्तर
Given:
P = `[(2, 6),(3, 9)]` and Q = `[(3, x),(y, 2)]`
∴ PQ = `[(2, 6),(3, 9)][(3, x),(y, 2)]`
= `[(2 xx 3 + 6 xx y, 2 xx x + 6 xx 2),(3 xx 3 + 9y, 3 xx x + 9 xx 2)]`
= `[(6 + 6y, 2x + 12),(9 + 9y, 3x + 18)]`
∵ PQ = Null matrix
∴ `[(6 + 6y, 2x + 12), (9 + 9y, 3x + 8)] = [(0, 0),(0, 0)]`
Comparing the corresponding elements, we have
6 + 6y = 0
`\implies` 6y = –6
`\implies` y = `(-6)/6` = –1
And 2x + 12 = 0
`\implies` 2x = –12
`\implies` x = `(-12)/2` = –6
Hence x = –6, y = –1.
APPEARS IN
संबंधित प्रश्न
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find AB.
Find the 2 x 2 matrix X which satisfies the equation.
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute A(B + C)
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
Choose the correct answer from the given four options :
If A = `[(2, -2),(-2, 2)]`, then A2 = pA, then the value of p is
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: (A + B)(A – B)