Advertisements
Advertisements
प्रश्न
If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.
उत्तर
M2 = `[(4, 1),(-1, 2)][(4, 1),(-1, 2)]`
= `[(4 xx 4 + 1 xx (-1), 4 xx 1 + 1 xx 2),(-1 xx 4 + 2 xx (-1), -1 xx 1 + 2 xx 2)]`
= `[(16 - 1,4 + 2),(-4 - 2, -1 + 4)]`
= `[(15, 6),(-6, 3)]`
6M – M2 = `6[(4, 1),(-1, 2)] - [(15, 6),(-6, 3)]`
= `[(24, 6),(-6,12)] - [(15,6),(-6,3)]`
= `[(24 - 15, 6 - 6),(-6 - (-6), 12 - 3)]`
= `[(9, 0),(0, 9)]`
= `9[(1, 0),(0, 1)]`
= 9I
Hence proved.
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
If P = `[(4, 6),(2 ,- 8)], "Q" = [(2, -3),(-1, 1)]` Find 2PQ
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
If `[(1, 3),(0, 0)] [(2),(-1)] = [(x),(0)]` Find the value of x
Find x and y if `[(-3, 2),(0, -5)] [(x),(2)] = [(5),(y)]`
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`