Advertisements
Advertisements
प्रश्न
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
उत्तर
Given
`[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
⇒ `[(2x + 2y, -y),(4x, -x + y)] = [(3),(2)]`
⇒ `[(2x, + y),(3x, + y)] = [(3),(2)]`
Comparing the corresponding elements
2x + y = 3 ...(i)
3x + y = 2 ...(ii)
Subtracting, we get
–x = 1
⇒ x = –1
Substituting the value of x in (i)
2(–1) + y = 3
⇒ –2 + y = 3
⇒ y = 3 + 2 = 5
Hence x = –1, y = 5.
APPEARS IN
संबंधित प्रश्न
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
If `P = [(2,6),(3,9)]` and `Q = [(3,x),(y, 2)]` find x and y such that PQ = null matrix
`If A = [(1, -2 ,1), (2,1,3)] and B= [(2,1),(3,2),(1,1)]`;
Write down the product matrix AB.
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
Construct a 2 x 2 matrix whose elements aij are given by `((i + 2j)^2)/(2)`.
If A = `[(1, 1),(x, x)]`,find the value of x, so that A2 – 0
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
If P = `[(2, 6),(3, 9)]` and Q = `[(3, x),(y, 2)]`, find x and y such that PQ = null matrix.
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: A2 – B2
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.