Advertisements
Advertisements
प्रश्न
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
उत्तर
`[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
⇒ `[(2x xx 3 + x xx 2),(y xx 3 + 3y xx 2)] = [(16),(9)]`
⇒ `[(6x + 2x),(3y + 6y)] = [(16),(9)]`
⇒ `[(8x),(9y)] = [(16),(9)]`
Comparing, we get
8x = 16
⇒ x = `(16)/(8)` = 2
and
9y = 9
⇒ y = `(9)/(9)` = 1
Here x = 2, y = 1.
APPEARS IN
संबंधित प्रश्न
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible A2
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
If A = `[(3, 5),(4, -2)] and "B" = [(2),(4)]` , is the product AB possible ? Give a reason. If yes, find AB.
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal. A + CB
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
If A = `[(1, 4),(0, -1)], "B" = [(2, x),(0, -1/2)]`find the value of x if AB = BA