Advertisements
Advertisements
प्रश्न
Find x and y if `[(-3, 2),(0, -5)] [(x),(2)] = [(5),(y)]`
उत्तर
`[(-3, 2),(0, -5)] [(x),(2)] = [(5),(y)]`
⇒ `[(-3x, 4),(0, -10)] = [(-5),(y)]`
⇒ `[(-3x , +4),(0, -10)] = [(-5),(y)]`
Comparing the corresponding elements
–3x + 4 = –5
⇒ –3x = –5 – 4 = –9
∴ x = `(-9)/(-3)` = 3
–10 = y
⇒ y = –10
Hence x = 3, y = –10.
APPEARS IN
संबंधित प्रश्न
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
If `A = [(3, x),(0, 1)]` and `B = [(9, 16),(0, -y)]` Find x and y when `A^2 = B`
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
`If A = [(1, -2 ,1), (2,1,3)] and B= [(2,1),(3,2),(1,1)]`;
Write down the product matrix AB.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
Given A = `[(1, 1),(8, 3)]`, evaluate A2 – 4A
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal.CA + B
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
Choose the correct answer from the given four options :
If A = `[(0, 1),(1, 0)]`, then A2 =